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We investigate the approach to the universal regime of the dilute unitary Fermi gas as the density is reduced
to zero in a lattice model. To this end we study the chemical potential, superfluid order parameter and internal
energy of the attractive Hubbard model in three different lattices with densities of states �DOSs� which share
the same low-energy behavior of fermions in three-dimensional free space: a cubic lattice, a “Bethe lattice”
with a semicircular DOS, and a “lattice gas” with parabolic dispersion and a sharp energy cutoff that ensures
the normalization of the DOS. The model is solved using dynamical mean-field theory, that treats directly the
thermodynamic limit and arbitrarily low densities, eliminating finite-size effects. At densities on the order of
one fermion per site the lattice and its specific form dominate the results. The evolution to the low-density limit
is smooth and it does not allow to define an unambiguous low-density regime. Such finite-density effects are
significantly reduced using the lattice gas, and they are maximal for the three-dimensional cubic lattice. Even
though dynamical mean-field theory is bound to reduce to the more standard static mean field in the limit of
zero density due to the local nature of the self-energy and of the vertex functions, it compares well with
accurate Monte Carlo simulations down to the lowest densities accessible to the latter.
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I. INTRODUCTION

The ever increasing ability to manipulate and control ul-
tracold Fermi gases allows to experimentally realize in an
accurate and controlled way physical conditions which can
only be approximately realized in solid state, like the cross-
over from weak-coupling Bardeen-Cooper-Schrieffer �BCS�
superfluidity to strong-coupling Bose-Einstein condensation
�BEC� of preformed bosonic pairs, which occurs in two-
component fermionic systems as a function of the coupling
strength.1

Actual realizations of degenerate ultracold Fermi gases
are dilute, i.e., the mean interparticle distance is much larger
than the range R0 of the interatomic potential. In terms of the
Fermi momentum kF= �3�2n�1/3 the diluteness condition is
equivalent to kFR0�1. For such dilute systems the effect of
the interaction can be parameterized through the s-wave scat-
tering length as only, regardless the details of the potential,
provided its short-range character. This is particularly in-
triguing because Fano-Feshbach resonances permit to control
the scattering length as by simply tuning a magnetic field.
One can thus move from negative values on the BCS side to
positive values on the BEC side, passing through the reso-
nance point, where as diverges. This latter situation is usually
referred to as unitary limit, and it displays an extra univer-
sality because the divergence of as leaves us with a single
length scale �n−1/3 and a single energy scale, the Fermi
energy.2 For example, the chemical potential and the super-
fluid energy gap will depend on the density only through the
Fermi energy EF, i.e., � ,��EF though with nontrivial coef-
ficients. The evaluation of these coefficients defies simple
analytical treatments, due to the strongly correlated nature of
the problem, and to the lack of obvious expansion param-
eters. In this light numerical methods, such as quantum

Monte Carlo �QMC� simulations3–10 of finite systems have
an extremely important role, both to obtain direct estimates
of the observables, and to guide the choice of the relevant
classes of diagrams in perturbative expansions. The use of
QMC overcomes the limitations of perturbative methods, but
QMC simulations still suffer from finite-size effects. More-
over they require a specific choice of the interaction poten-
tial, which may be relevant if the density is not small enough
to assure the realization of the dilute limit.

An alternative to a direct simulation of the dilute Fermi
gas is to consider the low-density limit of three-dimensional
�3D� lattice models with local interaction, like the attractive
Hubbard model. Obviously the lattice introduces a new
length scale associated with the intersite spacing. Therefore
the universal behavior can only be recovered in the zero-
density limit, where the infinite interparticle distance makes
the presence of the lattice irrelevant. This approach has been
used in the QMC simulations of Refs. 5 and 7–9, and it has
the advantage of an intrinsic regularization given by the lat-
tice spacing, which from the diagrammatic point of view
introduces an ultraviolet cutoff. Nonetheless, even if QMC
results for the attractive Hubbard model can be regarded as
essentially exact for finite systems, it should be kept in mind
that actual simulations are limited to a finite number of sites
and the density cannot be arbitrarily reduced. Hence they are
plagued by both intrinsic finite-size effects and by finite-
density effects, calling for careful extrapolations to the ther-
modynamic and zero-density limits.

In this paper we follow the lattice route to the dilute limit
using a theoretical approach which is explicitly built in the
thermodynamic limit and it has no intrinsic limitations to
treat arbitrarily small densities, the dynamical mean-field
theory �DMFT�.11 DMFT is a quantum, and more accurate,
version of standard mean-field theories, in which the solution
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in the thermodynamic limit is obtained neglecting spatial
correlations. This approach has been widely used in the con-
text of solid-state physics,11 and it proved accurate for most
three-dimensional correlated solids, and more recently it has
been proposed to access the properties of the dilute Fermi
gas in Ref. 12, where the system was studied in a three-
dimensional cubic lattice. Since our focus is to understand
the relevance of nonuniversal corrections to the universal
regime, here we extend the analysis of Ref. 12 considering
three different lattices �which will have different finite-
density corrections�, and much smaller densities.

Our analysis shows that the extrapolation to zero density
requires extreme care. Even if the three lattices have the
same low-energy density of states �DOS� �which yields the
same zero-density limit�, they provide significantly different
results �i.e., they are not in a universal regime� down to
densities on the order of 0.01 fermions per site. This is result
is an important warning because present QMC calculations
are limited to densities of this order of magnitude �to our
knowledge the lowest density available for the present prob-
lem is n=0.05 in Ref. 9�.

The weakest dependence on density is found for a model,
the so-called lattice gas, in which the DOS coincides with
that of fermions in free space up to a cutoff after which it
vanishes. The results for the cubic lattice and for a lattice
with a semicircular DOS are influenced to a larger extent by
the large-density behavior. Only for extremely small densi-
ties the three lattices provide the same result. Unfortunately
we find that in the same small-density limit DMFT reduces
to static MF, since the method is unable to reproduce the
divergence of as beyond MF. However we will see that the
limitations of DMFT appear only at very small densities,
while DMFT introduces important corrections to the static
mean field down to densities well below n�0.05. This ob-
servation also explains why in Ref. 12 DMFT was found to
extrapolate to a different value with respect to static MF.
Indeed our analysis shows that in this reference the zero-
density limit has been extrapolated from densities larger than
those for which DMFT approaches static mean field.

The paper is organized as follows. In Sec. II we introduce
the attractive Hubbard model and the approach to the zero-
density limit. Section III presents results of static mean field;
Sec. IV is devoted to the implementation of dynamical mean-
field theory for the attractive Hubbard model; Sec. V pre-
sents the DMFT results; and Sec. VI contains the final re-
marks.

II. ATTRACTIVE HUBBARD MODEL APPROACH TO
THE UNITARY LIMIT

In this section we discuss how the three-dimensional at-
tractive Hubbard model can be used to describe the proper-
ties of a two-component dilute gas. The Hamiltonian of the
model reads

�
k�,�

��k� − ��nk�� + U�
i

ni↑ni↓, �1�

where nk�=ck�
† ck��ni�=ci�

† ci�� is the number operator for
Fermions of spin � in momentum k �site i�. U�0 is the

strength of the local pairing interaction between fermions
with different flavor, and �k� is the free dispersion in a chosen
lattice with lattice spacing l.

The attractive Hubbard model has been studied in differ-
ent frameworks as a paradigm for lattice superconductors
and superfluids.13 Here we use this lattice model merely as a
systematic way to approach the universal regime of an inter-
acting gas. Therefore we focus on the small-density regime,
where the effect of the lattice is bound to disappear because
the average interparticle distance will ultimately become
much larger than the lattice spacing. Nonetheless, at every
finite density the details of the lattice are, in principle, rel-
evant.

In our theoretical approach the lattice under consideration
and its dispersion �k� enter the calculation only through the
density of states. For a system of noninteracting fermions
with mass m in three-dimensional continuum space the DOS
per unit volume is �assuming 	=1 everywhere� Dfree���
= 2�2m3/2

4�2
��. In order to obtain the correct zero-density limit,

we choose three lattices whose DOS’s per lattice site Dlattice
share the same low-density behavior of Dfree. This implies
that Dlattice���� l3Dfree��� for small energies, where l is the
lattice spacing that we will use as the unit length. In the
following we drop the index “lattice.” Namely, we use: �1� a
semicircular DOS

DSC��� =
2

�D
� �

D
�2 −

�

D
� , �2�

where D is the half bandwidth, that we will use as energy
unit in the rest of the manuscript. This DOS does not corre-
spond to any obvious dispersion but, as we shall see, it has
some practical advantages. For small energies close to the
bottom of the band we have DSC���� 2�2

�D3/2
��, which corre-

sponds to Dfree if we suitably choose the lattice effective
mass m= �4��2/3 /D.

�2� The so-called lattice gas, whose DOS coincides with
the free DOS up to a cutoff 
=1.40539. . .D above which it
vanishes. This value of 
 ensures the normalization of the
DOS per lattice site. This model can be seen as an approxi-
mate version of a system in which only the momenta in-
cluded in the Brillouin zone of the lattice are allowed, and
for each of these momenta the dispersion coincides with the
parabolic dispersion of free fermions. Indeed implementing
this procedure yields a similar DOS with a smoother energy
cutoff. This model has been studied in Refs. 5, 6, and 9,
where a different value of the cutoff was used. �3� A three-
dimensional lattice DOS for nearest-neighbor hopping on a
cubic lattice with dispersion �k� =−2t�cos kx+cos ky +cos kz�
with t=1 /2m=D /2�4��2/3. This choice has been used in
Refs. 7, 8, and 12.

In order to obtain a first insight on the properties of the
different lattices, in Fig. 1 we compare the low-energy part
of our DOS’s �obviously in this region the lattice gas coin-
cides with the target DOS for fermions is three dimensions�.
It is interesting to observe that the semicircular DOS follows
very closely the free 3D DOS, and it is therefore likely to
allow for a good convergence to the dilute limit n→0, while
the cubic lattice rapidly departs from the reference.
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As far as the interaction strength U is concerned, in order
to achieve the universal behavior in the dilute limit, U has to
be chosen as the unitary value, for which the scattering
length diverges. For a Hubbard potential as is related to the
coupling constant U through the relation8

as�U� =
m

4�	2

1

U−1 + ��0� ,0�
, �3�

where

��0� ,0� = 	
−�

�

d�
D���
2�

= − Uc
−1. �4�

For the semicircular DOS one finds Uc=−D, while for the
lattice gas Uc=−1.1624. . .D and for the cubic lattice Uc=
−0.73224. . .D.

III. A FIRST INSIGHT FROM STATIC MEAN FIELD

In order to obtain a first feeling about the role of finite-
density corrections to the dilute limit of lattice models and to
understand the role of the precise choice of the lattice, we
start from a simpler approach with respect to DMFT, i.e., the
static MF method. This approach shares the main advantages
of DMFT with respect to exact numerical methods, being
implemented in the thermodynamic limit without any restric-
tion in terms of attainable densities. Of course the method is
less accurate than DMFT, which introduces exactly local
quantum fluctuations, but it can be solved at very low com-
putational cost at every density. Finally, the zero-density
limit of the method is the well-known Leggett’s MF theory
for the BCS-BEC crossover in dilute gases,14 which we can
use as a benchmark to quantify finite-density corrections and
the dependence on the actual lattice.

The static MF approximation consists in decoupling the
attractive interaction term both in the normal and in the

anomalous s-wave Cooper channels, determining the value
of the pairing amplitude and of the chemical potential self-
consistently. Then we introduce the scattering length using
Eq. �3�. Finally we rescale the relevant energies by the non-
interacting Fermi energy EF of particles in 3D continuum
space. The MF equations for the rescaled chemical potential

�̃=� /EF and gap parameter �̃=� /EF are

4

3
= 	

−�

�

dxD̃�x�
1 −
�x − ��˜ �

��x − ��˜ �2 + �̃2
� , �5�

0 =
1

kFas
=

1

�
	

−�

�

dxD̃�x�
1

x
−

1

��x − ��˜ �2 + �̃2� , �6�

where the left-hand side of Eq. �6� vanishes because we take

the unitary limit as→�. D̃�x�=
D�EFx�

Dfree�EF� , D��� is the lattice

DOS, ��˜ = �̃−
Ucn

2EF
is the renormalized chemical potential in-

cluding the Hartree contribution �which vanishes in the di-
lute limit, so it does not appear in Leggett’s theory� and x
=� /EF.

The equations correctly reduce to Leggett’s results in the
zero-density limit, where both the gap and the chemical po-
tential are proportional to EF. At finite density, corrections to
the limiting value are introduced both by the different den-
sity of states with respect to the free DOS used by Leggett,
and by the Hartree shift of the chemical potential. The nu-
merical solution of the MF Eqs. �5� and �6� for the reduced
gap and chemical potential is reported in Fig. 2 for the three
different lattices under considerations. In order to highlight
the effect of the lattice we plot the results from the dilute
limit n=0 to the so-called half-filling �n=1� situation in
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FIG. 1. �Color online� Comparison between the three different
DOS’s with parameters such that the low-energy behavior coincides
with that of free electrons, as discussed in the text: semicircular
DOS �dot-dashed red line�, cubic three-dimensional lattice �dashed
green line�, and lattice gas �solid blue line�. For reference the DOS
for free fermions in three-dimensional space is shown as a dotted
black line. Energies are expressed in units of the half-bandwidth D
of the semicircular DOS, the DOS per site is measured in units of
1 /D.
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FIG. 2. �Color online� Static mean-field results for the dimen-
sionless rescaled chemical potential � /EF and superconducting or-
der parameter � /EF as a function of density of particles n �dimen-
sionless�. The dashed blue line is for the cubic lattice, the red solid
line for the semicircular DOS, and the dot-dashed green line is for
the lattice gas. Horizontal arrows mark Leggett’s results in the zero-
density limit.
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which we have one fermion per lattice site. In this latter
situation the three models have no reasons to display similar
physics, and the observables assume different values. Reduc-
ing the density the results for the different lattices are ex-
pected to shrink, before eventually disappear in the dilute
limit n→0. The outcome of our study is that this evolution is
extremely slow and smooth, and the three models present
important differences down to very low density. Moreover,
this smooth evolution does not allow to define a low-density
region in which the models are essentially equivalent.

The dependence on the actual lattice is very strong for the
chemical potential, which is naturally very sensitive to the
behavior of the DOS. On the other hand the superfluid order
parameter depends in a weaker way on the choice of the
lattice. This is most likely due to the fact that the unitary
regime is physically closer to the Bose-Einstein regime, in
which the interaction strength controls the order parameter
and the details of the band structure are less important, than
to the BCS regime, where the DOS at the Fermi level has a
major effect on the order parameter. Nonetheless, the depen-
dence on density is still very strong for all the considered
lattices.

In the case of the chemical potential �and of the renormal-
ized internal energy, that we will show later in comparison
with DMFT results�, it is evident that the cubic lattice intro-
duces significantly larger finite-density corrections at any
density, while the two other models can give rise to smaller
deviations. As mentioned above, this is essentially due to the
peculiar value of �̃ at n=1 for the cubic lattice, ultimately
arising from the peculiar behavior of the DOS. Finally, all
the curves approach the zero-density limit from below and
with a very large slope. This is a first indication that any
attempt to extract informations about the dilute Fermi gas
from a lattice perspective needs a very careful extrapolation
to the zero-density limit �besides the thermodynamic limit�,
and that the choice of the noninteracting density of states can
be crucial to minimize these effects.

Another observation is in order. The behavior as a func-
tion of density of the rescaled quantities derives from a rather
involved interplay between the “large-density” effects �in
which the precise choice of the lattice is very important� and
the tendency toward the universal unitary limit. As a conse-
quence, it is not possible to define a well-defined density
scale under which the finite-density system already displays
the universal physics. We can have regimes of density in
which some quantities appear rather flat, or they have
minima. In these regions or points one has that the derivative
of the renormalized quantities as a function of the density is
zero. For the sake of definiteness, we have that, for the semi-
circular DOS one has ��̃ /�n=0, at n�0.1. If no data were
available for smaller densities one could be tempted to inter-
pret the vanishing derivative as the beginning of a regime in
which �̃ is independent of n, i.e., a universal regime in
which the dependence on density is lost. Obviously, our MF
data show that this is not the case, and the vanishing deriva-
tive is only associated to a minimum after which the dilute
limit is approached. We observe that this could not be
equally evident in a simulation on a finite lattice, where only
a finite number of densities can be considered. In other
words, the simple observation of a zero derivative of the

observables as a function of density does not guarantee that
the system is in the dilute, and authentically universal, re-
gime, but rather it can suggest an artificial, or fake univer-
sality.

IV. DYNAMICAL MEAN-FIELD THEORY OF THE
ATTRACTIVE HUBBARD MODEL

A. General formalism and the model

We briefly introduce DMFT and its application to attrac-
tive models and superfluidity. Previous DMFT studies of this
model have been so far mostly devoted to the high-density
regime. In Refs. 15 and 16 the normal phase has been studied
by excluding superfluidity, and a pairing transition between a
normal metal and a pseudogapped state of preformed pairs
has been found. Various properties of the superfluid state
have been studied with the same approach, highlighting the
ability of DMFT to properly describe the BCS-BEC cross-
over without bias toward one of the two limits.17–20 The
same approach has also been used to study two-component
fermionic mixtures with mass unbalance21 and density
unbalance.22

The low-density regime of the attractive Hubbard model
has been recently studied within DMFT in order to access the
unitary regime in the normal state23 and in the superfluid
phase.12 In both papers, the cubic lattice has been used, and
some limitations at low densities have been reported. Here
we extend the analysis of Ref. 12 considering different lat-
tices, and we improve the numerical accuracy at low density,
which will allow us to draw important conclusions about the
ability of DMFT to describe the low-density limit.

DMFT maps a quantum lattice model onto a local prob-
lem, which can be represented through an “impurity
model,”11 i.e., a model in which a single interacting site is
embedded in a noninteracting medium. In our case Eq. �1� is
mapped onto an impurity model with attractive coupling, and
the noninteracting bath is superfluid. Namely,

HAM = �
l,�

��lcl�
† cl� + Vl�cl�

† d� + H.c.� + �l�cl↓
† cl↑

† + H.c.�


+ Hloc, �7�

where Hloc=−Un0↑n0↓−�n0 is the on-site term and the
chemical potential � controls the density. For all the different
lattices, �=0 corresponds to zero density in the noninteract-
ing case. From the impurity model we compute the normal
and anomalous Green’s functions, G�
�=−�Tc↑�
�c↑

†�0�� and
F�
�=−�Tc↑�
�c↓�0�� and the corresponding normal and
anomalous �superfluid� components of the self-energy �
and S.

The correspondence between the effective local model in
Eq. �7� and the original lattice model is guaranteed by a
self-consistency condition analogous to the Curie-Weiss
equation for the Ising model. The self-consistency condition
can be obtained by requiring that the impurity Green’s func-
tion coincides with the local component of the lattice Green’s
function, namely,
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G�i�n� = Glatt�i�n� � 	
−�

�

d�D���
z� − �

�z − ��2 + S2

F�i�n� = Flatt�i�n� � 	
−�

�

d�D���
− S�i�n�

�z − ��2 + S2 , �8�

where z= i�n+�−��i�n�.
We underline that the original lattice enters only through

the noninteracting DOS, and that for the semicircular DOS
Eq. �2� this equation is particularly simplified, since it does
not require the numerical integration on the energy.11 It is
important to notice that DMFT can be also seen as an ap-
proximation of the full Luttinger-Ward functional in which
only the local Green’s function is considered.11 This means
that DMFT is a variational method. Since the static MF, in
which the self-energy is local and it has no dependence on
frequency, is a subcase of DMFT in which the self-energy
loses the dynamical character, the variational principle im-
plies that DMFT is always an improvement over static MF,
unless the two methods become identical.11,24

B. Exact diagonalization solution

Despite the simplifications introduced in DMFT, the ef-
fective local model in Eq. �7� cannot be solved exactly by
analytical methods and numerical solutions are necessary.
Yet, the required computational effort is enormously lighter
than for the original lattice model, and, more importantly, the
method is defined in the thermodynamic limit, so that no
finite-size corrections need to be considered, as opposed to
full numerical solution of lattice models. Analogously, we
are in the grand canonical ensemble, where we can tune the
chemical potential and the density can assume arbitrarily
small values.

Here we adopt exact diagonalization �ED�,25 which re-
quires to truncate the sum in Eq. �7� to a finite number of
levels Ns. In practical implementations Ns is necessarily
small, but it has been shown that Ns smaller than 10 provides
accurate results for thermodynamic properties.25 Such a dis-
cretization introduces a new step in the iterative procedure.
Namely, after a new bath is obtained by means of the self-
consistency equation, it has to be represented into a discrete
form. This representation is usually obtained by fitting the
result of the self-consistency to a discrete system. The details
of the fit have to be chosen with care, especially in “delicate”
regions such as the low-density regime we are interested in.

As customary, we perform the fit on the imaginary-
frequency axis �even if we work at T=0�, where the Green’s
functions are smooth. This requires the definition of a fictive

inverse temperature �̃, which defines a Matsubara grid. A

large �̃ is required to investigate the low-frequency behavior

because of the small-energy scales. Here we used values of �̃
up to 6000 for the smallest densities. All the results we

present are converged as a function of �̃. Other aspects of the
fit are discussed, e.g., in Refs. 26 and 27.

ED has been used in the low-density limit of the attractive
Hubbard model in Ref. 12, where full diagonalization of the
Hamiltonian matrix has been used, limiting the study to Ns

=6 �5 levels in the bath�. Here we use the Lanczos algorithm,
which allows to compute the ground state for a larger Ns. We
analyzed systematically the behavior of the results for Ns
=6, 7, 8, and 9, and we found that the results for static
observables are essentially converged as a function of the
number of bath levels for Ns=8, which is the value that we
will use throughout the rest of the paper.

A direct measure of the systematic error associated with
our ED solution is the comparison between right-hand side
and left-hand side of Eq. �8�. In Ref. 12, using up to Ns=6,
the deviation between lattice and “impurity” estimates of the
density, obtained by integrating over the frequency, respec-
tively, the right-hand and left-hand sides of the first of Eq.
�8� has been found to strongly increase as the chemical po-
tential approaches the bottom of the band and the dilute re-
gion is approached. Here we found that a careful evaluation

of Matsubara sums, together with the different values of �̃
and of the maximum frequency used in the fit, can make the
deviations much smaller than what found in Ref. 12 already
for Ns=6. Increasing Ns to 8 and 9, we have been able to
reduce the difference between the two estimates down to 1%
at n�0.002–0.003, virtually eliminating discretization er-
rors. Therefore the only limitation of our data is the DMFT
approximation and no further uncertainty is introduced by
the numerics.

C. Zero-density limit and universal behavior

Even if we have almost eliminated the discretization er-
rors, a more profound limitation appears in the zero-density
limit when the universal behavior is addressed. The key req-
uisite to approach the unitary limit is the divergence of the
s-wave scattering amplitude as. From a diagrammatic point
of view as is obtained as a ladder sum for the irreducible
vertex part in the s-wave channel at q=0 in the vacuum. This
leads to the simple condition for which as diverges at the
smallest interaction value for which the two-body problem
develops a bound state. Within DMFT the only contribution
to the ladder sum comes from the local vertex function.11 It
is straightforward to verify that this local approximation is
not sufficient to recover the divergent as, but only leads to a
finite value which depends on the chosen lattice. However, at
static MF level in the broken-symmetry superfluid solution a
static on-site vertex function U=Uc is sufficient to reproduce
the required criticality of the two-body problem, despite the
nondivergent scattering length. As a consequence of the fi-
nite “local” scattering length as

loc, if we reduce the density
maintaining the coupling strength at the “universal value” Uc
for which the full solution of the model would lead to a
divergent as, we will eventually enter a regime in which the
quantity kFas

loc decreases, since the vanishing Fermi momen-
tum is not compensated by the infinite scattering length. This
will inhibit to reach a real universal regime beyond MF. The
necessity of nonlocal contributions in the zero-density limit
is even more transparent if the symmetry is not broken �nor-
mal state�. Here it is indeed necessary to include a nonlocal
vertex function �divergent in the ultraviolet in the continuum
limit� in order to obtain a finite contribution in the kF=0
limit. The above analysis implies that, while the DMFT cal-
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culations will be accurate at finite density, when the density
becomes extremely small the approach will finally acquire a
MF character with vanishingly small �weak-coupling� cor-
rections. The value of the density below which this effect
will take place is clearly a function of the effective local as,
which measures how far from the unitary limit we are in
practice. This limit density can be estimated by simply re-
quiring that kFas

loc�1. For the semicircular DOS we obtain a
local scattering length as

loc�1.08892. This implies that
DMFT will reduce to static MF only for n�1.3�10−3, a
remarkably small value, smaller than the lowest densities
attainable in present-time QMC simulations. Therefore
DMFT is expected to be accurate down to extremely low
density, making it a reliable tool for the investigation of the
small-density regime.

V. DMFT RESULTS

Before discussing the role of the different lattices in the
finite-density corrections to the universal limit, in this section
we analyze the behavior of the most relevant observables in
our DMFT solutions. For the sake of definiteness, in this
section we limit ourselves to the semicircular DOS, which is
most easily implemented.

As we already mentioned, DMFT is naturally expressed in
the grand-canonical ensemble where the chemical potential
is the natural variable. In Fig. 3 we plot n and � as a function
of �. Starting from half-filling �n=1�, where the value of the
chemical potential is fixed by the particle-hole symmetry of
the model ��n� �n=1=D+Uc /2=D−D /2=D /2, the density
vanishes as the chemical potential vanishes, i.e., approaches
the bottom of the band. A first look at the n��� curve shows
a rather smooth evolution from a high-density region in
which n has essentially constant slope �i.e., the compressibil-
ity �=�n /�� is nearly constant� to a low-density regime in
which n��3/2 or ���1/2 as expected from universality. The
power-law behavior is emphasized by the logarithmic scale
used in the inset of Fig. 3. Analogously � evolves from being

nearly independent of � for large densities to a linear behav-
ior at small �.

Another relevant quantity in the unitary limit is the en-
ergy. To obtain the internal energy E=V+K, we computed
the potential �V� and kinetic �K� energies. The potential en-
ergy per site is

V = U
1

N�
i

�ni,↑ni,↓� � Ud , �9�

where N is the total number of lattice sites and d is by defi-
nition the fraction of doubly occupied sites �local pairs� in
the ground state, which can be computed directly as a static
average of the double occupancy operator. The kinetic en-
ergy per site reads

K =
2

N
�

k��FBZ

�k��nk�� = 2T�
n
	

−�

�

d�D����G��,i�n� �10�

and it can be calculated from the lattice Green’s function
G�� , i�n�. For the semicircular DOS Eq. �10� is simplified
and it becomes a function of the local Green’s functions only
�even if a sum over Matsubara frequencies is still required�

K =
D2T

2 �
n

�G�i�n�2 + G��i�n�2 − 2F�i�n�2
 . �11�

We compared Eqs. �10� and �11� obtaining an almost perfect
agreement, which allows us to confidently use Eq. �10� for
the other dispersions in the following, for which the simpler
relation in Eq. �11� does not hold.

In Fig. 4 we plot the energy per particle e=E /n together
with the two contributions k=K /n and �v�= �V� /n. The ampli-
tude of the kinetic term is always larger than the potential
term, correctly implying E=K+V�0, even if the difference
rapidly shrinks as the density is decreased. Interestingly, the
two contributions both vanish as n1/3 for small densities, as
shown by the logarithmic plot in the inset of Fig. 4, while the
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FIG. 3. �Color online� Particle density n �solid blue line� and
superfluid order parameter � �red dashed line� as a function of the
chemical potential � for a semicircular DOS. The inset shows the
low-density region in logarithmic scale, which shows that n��3/2

and ���. � and � are measured in units of D, n is dimensionless.
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FIG. 4. �Color online� Ground-state energy density �total energy
divided by the density� as a function of the density n. We plot the
total-energy density e �blue solid line�, the kinetic contribution k
�red dashed line�, the absolute value of the potential-energy contri-
bution �v� �dot-dashed green line�. The inset shows the low-density
region in logarithmic scale. Energies are expressed in units of D.
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total energy, obtained as their sum �or the difference between
the two curves in Fig. 4�, scales as n2/3, the correct behavior
for an energy density in the dilute limit. These power-law
behaviors have been recently proposed in Ref. 28 based on
very general arguments, and are confirmed by our calcula-
tions. To our knowledge, this is the first numerical confirma-
tion of these results. Moreover, the correct behavior of e,
which emerges through a subtle cancellation of the leading
contributions in v and �k�, is a valuable confirmation of the
accuracy of our estimates for the two contributions K and V.

Rescaled quantities

In this section we extend the MF analysis of Sec. III com-
puting the same observables using DMFT. As we will detail
in the following, the dynamical nature of DMFT introduces
sizeable corrections over static MF, but some general trends
we discussed are found to be robust.

The large correction introduced by DMFT with respect to
MF is evident in Figs. 5–7, where we compare, respectively,
the reduced chemical potential � /EF, internal energy �
=E / �3 /5nEF�, and superfluid order parameter � /EF obtained
in DMFT and in static MF for the three DOS’s. For n=1 the
chemical potential is set by particle-hole symmetry, and it is
therefore the same in DMFT and MF theory.29 As soon as the
density is decreased, Fig. 5 clearly shows that DMFT intro-
duces a sizeable change with respect to MF, which is due to
the accurate treatment of quantum fluctuations. Interestingly,
the change brought by DMFT increases by reducing the den-
sity in a wide range of densities, and it appears much larger
for the semicircular and lattice gas densities of states than for
the cubic lattice. The lattice gas displays the weakest depen-
dence on density. It is also evident, however, that the DMFT
curves approach the same limit of the static MF as the den-
sity actually approaches zero, as we expected from the argu-
ments given in Sec. II, where we have shown that the includ-
ing only local diagrams the scattering amplitude cannot
diverge and contributions beyond MF are bound to vanish
for n→0. The reduction in DMFT to static MF is confirmed
by the behavior of the self-energies �not shown�. While for
every finite density the self-energies have a nontrivial fre-
quency dependence, in the very small-density range in which
DMFT rapidly collapses on the static MF, this frequency
dependence disappears and the self-energies become con-
stants, as in static MF. The results for the normalized internal
energy �=E / �3 /5nEF� are reported in Fig. 6, and show simi-
lar trends with respect to the chemical potential, confirming
the anomalous behavior of the cubic lattice and the weaker
density dependence of the lattice gas.

In Fig. 7 we propose a similar comparison also for the
superfluid gap �, again divided by the natural energy scale
EF. As we have already discussed for the MF results, here the
three different lattices have a similar behavior. All the curves
are monotonically decreasing functions of the density, in
contrast with the minima presented by the chemical potential
and the energy in some of the lattices. However, DMFT de-
termines strong corrections also for this quantity. It is intrigu-
ing that the different lattices receive significantly different
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FIG. 5. �Color online� Dimensionless renormalized chemical
potential as a function of density. Comparison between static MF
and DMFT �marked by open dots�. Blue dashed line is for the cubic
lattice, solid red line for the semicircular DOS, and dot-dashed
green line for the lattice gas.
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FIG. 6. �Color online� Dimensionless renormalized internal en-
ergy as a function of density. Comparison between static MF and
DMFT �marked by open dots�. Blue dashed line is for the cubic
lattice, solid red line for the semicircular DOS, and dot-dashed
green line for the lattice gas.
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FIG. 7. �Color online� Dimensionless renormalized superfluid
order parameter as a function of density. Comparison between static
MF and DMFT �marked by open dots�. Blue dashed line is for the
cubic lattice, solid red line for the semicircular DOS, and dot-
dashed green line for the lattice gas.
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renormalizations. The cubic lattice, that has the largest size
effects in static MF is the one that is less affected by the
dynamical effects introduced by DMFT, while the semicircu-
lar and lattice gas DOS have similar shifts. In all cases the
superfluid gap is reduced, as expected by the introduction of
effects beyond MF. Nonetheless, also for � the zero density
limit becomes identical to the static MF.

Nonetheless, it is indeed evident that, for all the observ-
ables, the correction introduced by DMFT with respect to
MF increases as the density is reduced, until we reach a very
low density for which the nondivergence of the scattering
amplitude forces the result to rapidly approach the static MF.
In this light, it is safe to assume that down to the densities at
which the distance between MF and DMFT data is still in-
creasing in Figs. 5–7 DMFT data are not plagued by the lack
of a divergent as. In the semicircular DOS and the lattice gas
and for � /EF and � this density scale is around n�0.02.

A clear outcome of our DMFT analysis is that the non-
universal finite-density effects can be very large and they
strongly depend on the choice of the lattice. For all lattices,
the evolution from the large-density regime to the dilute re-
gime is very smooth and regular. The difference between the
different lattices is still very large at n�0.05–0.1 or smaller,
which are therefore not representative of a real low-density
regime where the physics becomes universal. This implies
that any attempt to obtain informations about the universal
regime should be based on a careful finite-density limit, and
that densities much smaller than n�0.05–0.1 should be used
in this extrapolation. Unfortunately modern QMC calcula-
tions are just at the limit of this region �to our knowledge the
smallest density used for the attractive Hubbard model is n
=0.05 in Ref. 9�, suggesting that further work is required to
extract in a completely reliable way the properties of the
universal Fermi gas.

A second important result is that the cubic lattice is the
worst choice among the models we considered. In this model
the large-density regime has a peculiar behavior which re-
sults from the singularities of the DOS, and it is very hard to
wash out these effects by reducing the density. As a result,
this model has the slowest convergence to the zero-density
limit. Furthermore, the corrections introduced by DMFT are
smaller than for the other lattices.

The lattice gas and the semicircular DOS give rise to
comparably accurate results, even if the lattice gas presents a
weaker dependence on the density, which makes it the best
candidate for future studies. The correction introduced by
DMFT on static MF is similar for the two models.

A direct comparison between our DMFT results and QMC
simulations is not straightforward in light of the limits of
DMFT in the zero-density limit. Nonetheless, if we simply
consider the values of the observables around the density
below which DMFT rapidly approaches the static MF, we
find that the results of the lattice gas are in very good agree-
ment with other estimates. For example for the lattice gas we

have ��0.43 and �̃�0.55 �the estimate for �̃ is rather ar-
bitrary, because this quantity does not show any minimum as
a function of density�. Comparing the latter two quantities
with Fig. 14 of Ref. 6, where several results from different
numerical methods are collected, our data are clearly in the
same range.

We conclude our analysis by presenting in Fig. 8, as an
example, the DMFT data for the chemical potential normal-
ized by the lattice Fermi energy corresponding to each DOS.
This shows that also the cubic lattice displays now a mini-
mum as a function of density, which was not present in Fig.
5. Indeed the comparison with the free-space Fermi energy is
only meaningful at small density, especially for the cubic
lattice, whose DOS is very different from the free one �see
Fig. 1�. This plot shows that the existence of a minimum is a
general results, which can be used to define a safe region in
which the DMFT provides a significantly lower energy with
respect to MF and an accurate description of a finite-density
lattice model. This makes the argument about “fake univer-
sality” that we discussed in Sec. III relevant for any finite-
density extrapolation to the zero-density limit.

VI. SUMMARY AND CONCLUSIONS

We have presented a thorough investigation of the ap-
proach to the zero-density limit of a lattice model with local
attractive interaction. Three different lattice models have
been considered, all sharing the low-energy density of states
of free fermions in three dimensions. Tuning the interaction
strength at the unitary limit, for which the scattering length
diverges, the three models approach the same zero-density
limit, which is expected to reproduce the properties of a
three-dimensional unitary Fermi gas.

Our investigation is based on dynamical mean-field
theory �DMFT�, and for comparison on static mean field at
finite density. We show that DMFT introduces large correc-
tions to MF down to very small densities, even if it is bound
to reduce to static MF at zero density because the local ap-
proximation inherent to DMFT does not allow for a diver-
gence of the scattering length beyond MF. Following the
evolution from large densities on the order of one fermion
per site to zero density, the correction introduced by DMFT
increases as the density is reduced for a large window of
densities. Only at very small densities on the order of 10−2

DMFT starts to approach static MF. The finite-density cor-
rections are nonuniversal as expected and they turn out to
strongly depend on the choice of the lattice. For all the lattice
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FIG. 8. �Color online� Dependence on the density of the chemi-
cal potential divided by the lattice free Fermi energy for the three
lattices under study �dimensionless quantity�.
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we considered, the evolution as a function of density is really
smooth, and the large-density properties influence the phys-
ics down to very low densities. The three-dimensional cubic
lattice, in particular, has the slowest convergence because of
its peculiar DOS. The lattice gas and a system with a semi-
circular DOS display a much better convergence.

While the chemical potential and the energy strongly de-
pend on the chosen lattice, the superfluid order parameter has
a more lattice-independent behavior, even if the finite-
density effects are sizeable. This can be associated to the fact
that the unitary regime is closer to a strong-coupling Bose-
Einstein regime, in which the interaction strength controls
the order parameter and the details of the band structure are
less important.

Our result highlight the importance of nonuniversal finite-
density corrections to the unitary limit and impose serious
constraint on any attempt to extrapolate the physics of the
universal Fermi gas from finite-density calculations. In par-
ticular densities around n�0.05–0.01 are not representative
of the dilute regime, but they are still controlled by the large-
density physics �and they strongly depend on the chosen lat-
tice�.

We finally remind that the limitations of DMFT are only
dangerous when we want to describe the zero-density limit
of a fermionic gas at unitarity. When we directly deal with
lattice models, our results shown that the approach proves
extremely accurate and introduces large corrections to static
mean field down to extremely low densities.
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